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ABSTRACT

The use of high-density remote sensing buoys and ship-based observations play an increasingly crucial role

in the operational assimilation and forecast of oceans. With the recent release of several high-resolution

observation datasets, such as the Global Ocean Data Assimilation Experiment (GODAE) high-resolution

SST (GHRSST) datasets, the development of observation-thinning schemes becomes important in the pro-

cess of data assimilation because the huge quantity and dense spatial–temporal distributions of these datasets

might make it expensive to assimilate the full dataset into ocean models or even decay the assimilation result.

In this paper, an objective model simulation ensemble-based observation-thinning scheme is proposed and

applied to a Chinese shelf–coastal seas eddy-resolving model. A successful thinning scheme should select

a subset of observations yielding a small analysis error variance (AEV) while keeping the number of ob-

servations to as few as possible. In this study, the background error covariance (BEC) is estimated using the

historical ensemble and then the subset of observations to minimize the AEV is selected, which is estimated

from the Kalman theory. The authors used this method in the GHRSST product to cover the shelf and coastal

seas around China and then verified the result with an estimation function and assimilation–forecast systems.

1. Introduction

Recent observations, such as those from satellites, are

characterized by their huge quantity and dense spatial

distributions, which are often denser than the model grids.

For example, the density of high-resolution SST datasets

provided by the Global Ocean Data Assimilation Experi-

ment (GODAE) high-resolution SST (GHRSST) project

exceeds 1/208 every 6 h (Donlon et al. 2002, 2004, 2007;

Donlon 2003). However, for many numerical ocean

models it is unnecessary or even infeasible to assimilate

such a huge dataset into numeric ocean models. The ex-

cessively high resolution of the observations occupies too

much of the computational resources during the process

of assimilation for some data assimilation schemes.

Data assimilation schemes can be formulated to solve

the analysis in ensemble space (e.g., Testut et al. 2003;

Sakov et al. 2009) Liu and Rabier (2002) established a

relationship between the observation density and the

resolution of the model grid with a theoretical model.

Their study shows that exorbitant density of observation

may decrease the quality of analysis states if error cor-

relations are neglected between different observational

points. The disadvantages and restrictions of the high ob-

servation density mentioned earlier motivates us to es-

tablish and develop observation thinning methods and

schemes to reduce the computational costs, as well as to

avoid impairing analysis results in the assimilation process.

Several so-called super observation schemes have been

proposed to thin densely distributed observations, and

to help us confirm the representative error of the thinned

observations. For example, Ochotta et al. (2005, 2007)

proposed an estimation error analysis (EEA) scheme. In

this method, a continuous estimation function (EF) is

established in the model domain, where the value at any

location is calculated by a weighted average of the ob-

servation values in the neighboring locations. The EEA

method constructs a thinned dataset by iteratively re-

moving observations from the full dataset and minimizing

the degradation of the continuous EF in each step. In this

way, the information of the full dataset can be maximally

preserved in the subset. In another respect, Sakov and

Oke (2008) proposed a method to estimate the repre-

sentation error (RE) of the thinned observations. They

assumed that the main source of the RE is unresolved

Corresponding author address: Jiang Zhu, ICCES, Institute of

Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

100029.

E-mail: jzhu@mail.iap.ac.cn

1044 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 27

DOI: 10.1175/2010JTECHO709.1

� 2010 American Meteorological Society



processes and scales. The observations are averaged ac-

cording to the resolution of the model grid, and the RE

is considered as the deviation of the original data from

the averaged field. Several other methods and principles

were also established to help us determine the total

number and concentration of observations in ‘‘optimal’’

assimilations, such as the method of relative entropy and

Shannon entropy (Xu 2007) and the theoretical one-

dimensional study of the interaction between model res-

olution and observation density (Liu and Rabier 2002).

These studies supported that the subset of observation in

an optimal assimilation should not only subject to con-

taining the maximum information of the whole observa-

tion but also be associated with the model resolution

as well as the covariance between model grids and their

adjacent points. However, the factors of the model reso-

lution and the assimilation scheme are rarely considered

in current studies on developing practical high-resolution

SST observation-thinning schemes.

Ensemble-based methods for optimal array design have

been widely used in the last few years (e.g., Bishop et al.

2001; Tippett et al. 2003; Langland 2005; Khare and

Anderson 2006; Oke and Sakov 2008). In this paper, an

ensemble-based method is employed to thin the high-

resolution SST, for the assimilation with an eddy-resolving

ocean model of Chinese shelf/coastal seas (CSCS). The

thinning scheme is verified based on Ochotta et al.’s (2005)

EEA method and a high-resolution SST dataset.

This paper is organized as follows: a brief description

of the method is presented in section 2; followed by the

description of the model and observation dataset used in

this study in section 3; next, the results and their verifi-

cation are presented in section 4 and section 5; and fi-

nally, section 6 is the discussion and conclusions.

2. Method

a. Principles and procedure of the thinning scheme

In assimilation schemes, the state space of a model

can be defined as a column vector called the state vector,

written as x, whose components depend on the choice of

model’s discretization. The dimension n of x is often large

and can be 106–108 in realistic ocean models (e.g., 106 in

this study). For a given data assimilation scheme we use

a number of observed values that are gathered into an

m-dimensional observation vector y. For high-resolution

observations such as the GHRSST products m can be

larger than n. Current data assimilation schemes require

an observation operator, which relates the state vector to

the observation vector. For conventional observations

that are measurements of model variables, the observa-

tion operator is often defined as a linear interpolation

operator (an m 3 n matrix) as the following:

H 5

h
1

h2

..

.

h
m

0
BB@

1
CCA. (1)

In each of the components, hi is an n-dimensional row

vector and relates to the location of the ith observed

value in y. For a given interpolation scheme the loca-

tions of the observations can be exclusively determined

by H.

For high-resolution SST observations, three steps are

involved in the observation-thinning procedure. In the

first step, the complete observation dataset (with reso-

lution of 0.18), whose observation operator is written as

Hc, was thinned into several regular coarse-grid subsets

(such as 0.58 by 0.58, 0.38 by 0.38, etc.), whose observation

operators are defined as Hr. For each of these subsets of

observations, the analysis error variance, denoted by AEVr

is the trace of the analysis error covariance (AEC) ma-

trix Pa with the covariance updated equation:

Pa
r 5 [I� PbHT

r (HT
r PbHT

r 1 R
r
)�1Hr]P

b. (2)

Here, I is the identity matrix, Rr is the observational error

covariance matrix of the subset, and the superscript T

denotes matrix transposition. The Pb is the covariance

matrix constructed from the historical ensemble, as shown

in Eq. (4), and Rr is the observation covariance matrix.

Because we can hardly estimate the measurement error

of each single observation, we cannot accurately evaluate

the observation covariance. In this study, the observation

covariance matrix is defined as a diagonal matrix that can

dramatically induce computational cost.

However, these regular grid subsets of observations

are often overthinned and do not associate with the model

resolution and the covariance between model grids and

their adjacent points. Therefore, we need to add more

observations to them to further reduce their AEVs in

some optimal manner. In the second step, we added a

group of optimal observational points iteratively into

the coarse regular-grid subsets to form augmented ob-

servation subsets. The observation operator of the aug-

mented observation subsets is defined as Ha, and the

analysis error variance of these augmented subsets is

denoted as AEVa. To reduce the calculation expendi-

ture, we adopted a simplified scheme of Oke et al. (2008)

and Oke and Sakov (2008, and the equation) that ap-

plied the scheme to estimate and improve the objective

array observation system in the tropical Indian Ocean.

In this scheme, we select only one optimal observation

point during each of the iterations, with the augmented

observation operator matrix Ha defined as follows:
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Each ha,i associates with a certain location of an addi-

tional observation. The location of each additional lo-

cation is selected iteratively, following the principle that

this additional observation location can maximally reduce

the AEVa in each of the iterations. In this procedure, the

AEVa is continuously updated to evaluate the augmented

subsets. This simplified scheme will be further described

in section 2c.

In the third step, we validated these augmented subsets

by evaluating their capability of reserving the informa-

tion of the complete datasets with the Fleet Numerical

Meteorology and Oceanography Center (FNMOC) High-

Resolution SST/Sea Ice Analysis for GHRSST (FSTIA)

SST dataset. The validation method and procedure will

be described in section 5 in detail. A proper augmented

subset is then finally selected based on their validation

results.

b. Estimating AEVr of the regular-grid subsets

The large dimension of the state vector makes it im-

practical to explicitly manage the n by n background error

covariance (BEC) matrix. Instead, we can store and ma-

nipulate the BEC matrix by establishing a relationship

between the covariance matrix P and a representa-

tive ensemble A of the system state anomalies, An3k 5

[dx(1), . . . , dx(k)], where k is the sample size, dx(i) 5 x(i)� x

and the overbar denotes the ensemble average. Therefore,

the error BEC matrix P associated with the ensemble A

can be calculated by the function

P 5
1

m� 1
AAT. (4)

In fact, the function (2) can be further simplified by pro-

cessing each single observation point iteratively. Bishop

et al. (2001) proposed a method to calculate the matrix Pa

[cited as Eq. (4)–Eq. (8)], by updating the background

ensembles Ab / Aa. In this method, the new ensembles

Aa with the single observational point assimilated were

calculated primarily, and then the AEC matrix Pa was

updated via function (4). Ensembles Aa can be obtained

by the ensemble transform function:

Aa 5 AbT and (5)

T 5 I 1
1

m� 1
(HAb)TR�1HAb

� �1/2

. (6)

In Eq. (6), we have to calculate the inverse square root

of a matrix in the ensemble space of dimension m. This

calculation can be operated by using an eigenvalue de-

composition of the matrix in (7). Because this matrix is

symmetric, it can be decomposed as

I 1
1

m� 1
(HAb)TR�1HAb 5 ULUT, (7)

where U is an orthonormal matrix (UUT 5 I) and L is a

diagonal matrix. The inverse square root of the matrix

can be calculated as

T 5 UL1/2UT. (8)

Given a certain resolution, we can easily update the

ensembles and then calculate the AECr matrix by the

functions mentioned earlier [Eq. (4)]. The AEVr was

considered as an index, which can help us estimate the

resolutions of different thinned grids.

c. Method of adding optimal observations and
estimating of AEVa

The observation operator of the augmented observation

subsets Ha can be determined by solving the following:

H
a

5 arg min trace(Pa)

5 arg min tracef[I� PbHT(HTPbHT 1 R)�1H]Pbg.
(9)

This augmented operator Ha can minimize the trace of

the AEC matrix Pa, which indicates the sum of the AEVa

throughout the model domain. According to the relation-

ship that trace (AB) 5 trace (BA), the solution of Eq. (9)

can be written as (Oke and Sakov 2008)

H
a

5 arg max trace
H

a
P(H

a
P)T

H
a
PHT 1 R

a

. (10)

Here, Ra indicates the observation error covariance ma-

trix of the augmented observation subsets. Equation (10)

may include multiple observations. In a simpler case, if

only one additional single observation location is selected

in each step, the solution can be simplified to the fol-

lowing functions:

h
a,i

5 arg max(E) and (11)

E 5
1

h
a,i

PhT
a,i 1 r(i)

�
n

j51
(h

a,i
P)(h

a,i
P)T. (12)

In this solution, both of the matrix HaPHa
T and the ob-

servation covariance matrix R becomes a scalar: HaPHa
T 5

ha,iPhT
a,i and R 5 r(i), which makes it unnecessary for us
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to calculate the inverse of the matrix HaPHa
T 1 R. This

function helps us to estimate which point can maximally

reduce the trace of the AEC matrix; in each step, all

available observation locations are estimated by calcu-

lating their evaluation function E according to Eq. (12)

and the optimal interpolation operator ha,i that maximizes

the function E will be selected to add into the augmented

operator Ha. Besides, the scheme mentioned in section 2a

was employed to update the ensembles every step after a

certain optimal observation point was confirmed.

In this study, the optimal scheme is only optimal if the

following assumptions hold. First, this scheme assumes

that the background ensemble is unbiased, just like in

most of the ensemble assimilation schemes. Second, we

assume that the temporal variable can be represented by

a group of static ensembles and construct the background

covariance matrix with the historical ensemble (seasonal

cycle removed, without localization). This is a strong as-

sumption that will lead to inaccurate estimation of the

covariance matrix. Nonetheless, the covariance matrix

constructed by the stationary historical ensemble is cur-

rently widely used in data assimilation. Third, we do not

introduce localization to this thinning scheme but use

a global strategy because localization dramatically changs

the form of Eq. (6) in the thinning process, which makes

it impossible to update the ensemble. This may influence

the result if we use the subset in some localized assimi-

lation system. We plan to solve this problem by con-

ducting a simplified localization scheme in the thinning

process. Finally, in this scheme, we employed an itera-

tive process to obtain the most suitable observation one

by one. During this process, the reduction of AEV tends

to be overestimated all over the modal. It is the distribu-

tion and structure of AEV, rather than the absolute value

of the variance that helps us to better define the positions

of additional observations. These assumptions only ap-

proximate to the real world and result in a much easier

implementation. To remind readers of these assumptions,

we use the term optimal through out this paper.

d. Computational cost of this method

In this observation thinning scheme, the system selects

additional observations and adds them into the subset

through an iterative procedure. Therefore, it is necessary

for us to discuss its computational cost.

Here, Let M denote the dimension of the observation,

m the number of observation in the subset we selected, n

the dimension of background vector, and k the number

of the ensemble, which equals 120. For each cycle there

are two independent steps. First, we select the ‘‘most

suitable’’ observation by calculating the function E for

every M observation and obtaining the maximum value.

Here, E is defined as (12)

E 5
1

h
a,i

PhT
a,i 1 r(i)

�
k

j51
(h

a,i
P)(h

a,i
P)T

5
1

h
a,i

PhT
a,i 1 r(i)

�
k

j51
(h

a,i
A)(ATA)(h

a,i
A)T.

Matrix (ATA) is the first calculated and remains con-

stant during the whole cycle, whose computational cost

is on the order of k2 3 n. Then, we calculate E for each

observation using the calculated matrix (ATA) and the

cost of this process is approximately k 3 m. As a result, the

computational cost of the first step is ;k 3 (k 3 n 1 m).

Second, we update the ensemble according to Eq. (7)

(cost ; k2 3 n 1 k3), Eq. (8) (cost ; k3), and Eq. (5)

(cost ; k2 3 n), successively. The cost of each cycle (each

additional observation) can be easily calculate as follows:

k 3 (k 3 n 1 m) 1 k2 3 n 1 k3 1 k3 1 k2 3 n. Note that

in most forecast systems, k 3 n�M and k2 3 n� k3, we

can conclude that the cost of each cycle ;k2 3 n, and

the cost of the whole process (adding m observations)

;k2 3 n 3 m. This value can be primarily attributed to

the dimension of the background, the ensemble size, and

the number of additional observations (rather than the

total number of original observations dataset). In this

study, the ensemble size is 120 and the dimension of

model vector is ;106. It costs about 2–3 s for each ad-

ditional observation and the whole procedure costs sev-

eral hours. Considering the computational cost can be

primarily attributed to matrix multiplication (rather than

matrix inversing), the time of computation can be easily

reduced by parallel computation.

3. Model and datasets

a. Ocean model

A Chinese shelf/coastal seas (CSCS) model based on

a three-dimensional Hybrid Coordinate Ocean Model

(HYCOM; Bleck 2002; Chassignet et al. 2003, 2007) is

used to provide a simulation as realistic as possible. A

curvilinear horizontal grid is utilized with an average

spatial resolution of about 13 km. There are 22 layers in

the vertical coordinate. Using the bottom topography ob-

tained from the 2-minute gridded elevations/bathymetry

for the world (ETOPO2; 1/308), the model domain in-

cludes the whole CSCS and part of the west Pacific Ocean.

Figure 1 concisely displays the model domain and topog-

raphy. The model was initialized with the World Ocean

Atlas (Boyer et al. 2002) dataset (WOA01) and was

spunup for 5 years. Then, the model was forced by the

Comprehensive Ocean–Atmosphere Dataset (COADS)

climatological cloud amount and radiation dataset and the

European Centre for Medium-Range Weather Forecasts
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(ECMWF) 6-hourly reanalysis dataset (Uppala et al.

2005) from 1997 to 2006. And we use a one-way nesting

to an India–Pacific domain HYCOM simulation (1/48

resolution; Yan et al. 2007) as a sponge boundary con-

dition. The surface temperature and salinity are relaxed

to the climate on a time scale of 100 days.

The seasonal circulation and dynamic processes of the

CSCS are mainly controlled by the monsoonal wind force

and the impact of the western boundary currents. The

mean seasonal sea surface temperature (SST) and surface

velocity vectors of the two monsoon seasons in the CSCS

model are illustrated in Fig. 2. The temperature front

along the Kuroshio mainstream is well reproduced in this

model. In winter, the SST distribution of the South China

Sea (SCS) is characterized by a bifrontal structure (Chu

et al. 2002), where distribution corresponds to the current

along the Chinese coastline and the east of Vietnam. This

pattern is well illustrated by solid lines (238 and 26.58C

isothermals) in the control run SST panels of Fig. 2.

Meanwhile, the circulation pattern was successfully sim-

ulated and reproduced in most regions, characterized by

the strong Kuroshio in the Northwest Pacific and several

gyres in SCS. The axis of the Kuroshio and its exten-

sion are indicated with labels A and B, respectively. The

winter circulation in SCS is characterized by two cy-

clonic eddies (E and F in Fig. 2a) located to the west

of the Philippines and to the southeast of the southern

Vietnam shore, respectively (Qu et al. 2000). In summer,

the Vietnam offshore stream (marked by C in Fig. 2b)

and the anticyclonic eddy (D in Fig. 2b) located to the

southeast of Hainan, China, are clearly visible (Gan et al.

2006). However, the cyclonic eddy to the west of the

Philippines observed in summer is too weak to be iden-

tified in this model.

To calculate the BEC, a historical ensemble was con-

structed quasirandomly from the 10-yr model run. We

FIG. 1. The model’s curvilinear grid and topography contour. One-fifth of the horizontal grid

point is shown. The 50-, 1000-, and 4000-m isobaths are shown as thicker dark lines, while the

200-, 2000-, and 3000-m isobaths are denoted by gray contours.
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selected a sample from each month during the 10 yr and

constructed a 120 ensemble, although there is no fixed

rule in selecting the ‘‘date’’ of the sample. The spread of

these ensembles is illustrated in Fig. 3. The regions with

large spread are mainly concentrated to the Northwest

of the Kuroshio axis and along the continental coast. In

addition, the monthly mean component was eliminated

from these ensembles to construct a representative en-

semble associated with the intraseasonal variability of

the model SST fields.

b. High-resolution SST dataset

GHRSST-PP provides several SST products based

on satellite remote sensing observations (Donlon et al.

2002, 2004, 2007; Donlon 2003). In this study, we used

FSTIA provided by U.S. GODAE. The FSTIA dataset

was available from October 2005 until now, with the spa-

tial resolution of up to 10 km and the temporal resolution

of 6 h. The FSTIA dataset, along with several other

GHRSST products, were assessed by Xie et al. (2008) for

FIG. 2. (left) Mean seasonal SST and (right) surface velocity vectors (m s21) in (top) summer and (bottom) winter. Major jets and eddies

are labeled.
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the shelf–coastal seas around China using drifter obser-

vations and ship reports. The FSTIA dataset have good

quality for the studied region.

In this paper, the observational error of the FSTIA

dataset is assumed uncorrelated and the covariance ma-

trix of observation is defined as a diagonal matrix, in that

it is hard to estimate the covariance between the posi-

tions of different observations. We estimate the obser-

vation error variance according to Xie et al. (2008), which

evaluated the FSTIA observation with float observa-

tions and other satellite-based datasets and indicated

that an RMSE ranging from 0.38 to 1.28 exists in the

FSTIA dataset in different regions over and around the

model domain. The variance was also increased with an

estimated representative error all over the model do-

main (about 0.38).

4. Application to SST thinning in the coastal and
shelf seas around China

Different resolutions of coarse-grid subsets of FSTIA

are estimated in section 4a to find out an approximately

appropriate resolution for further improvement; and in

section 4b, the subsets of different original resolutions

were concentrated in several special regions following

the principle of maximally reducing the sum of AEV it-

eratively. Considering the multi-initial resolutions of this

scheme and the complex distributions of these concen-

trated subsets, this section mainly focuses on the issue of

what an adaptive number of additional optimal obser-

vations is and how to define a well-restricted AEV field.

In the analysis procedure, it is found that the results of

our observation-thinning performances are significantly

impacted by two factors: the background variances of the

points and the covariance (or correlation) between dif-

ferent points. It is supported that in some circumstances

the latter is as important as or even more important than

the former in terms of determining the analysis variance

of certain positions. That is because the influence range

of an observation is determined by the correlation length

scale (between the observation site and other model

grids) in the background error covariance in data assim-

ilation schemes. The larger the length scale is the larger

impact/weight the observation has. We further explain

this phenomenon in mathematical terms as follows.

Consider the classic ensemble assimilation equation

Xa 5 Xb 1 AATHT(HAATHT 1 R)21D, where Xa is anal-

ysis vector, Xb is the first-guess field, A is the background

ensemble, H is the observational operator, R is the ob-

servation covariance matrix, and D is the innovation. The

matrix C 5 AATHT defines the covariance between model

grids and observation positions. If Ci, j is large, the jth

observation has a large weight in the increment of the ith

element of the analysis vector. This process draws the

analysis field closer to observation. For a single model

grid, if it has high covariance with a large area, a com-

paratively low observation density can insure that there

are enough observations in this area to restrict the analysis

value of this model grid. In contrast, if the high-covariance

area of a model grid is small, we need to increase the ob-

servation density in this area to sufficiently match the

analysis field to observation. That is why the observation

density is not only associated with the background var-

iance but also results from the covariance. (The matrix

HAATHT also contributes to these processes, but it is too

complicated to explain mathematically because of the

inversion.

As a result, a point will be influenced and restricted by

many more observations under the condition of large-

scale high correlation and vice versa. This issue will be

addressed when it is associated with the model result in

the following section (4a) to help us explain some phys-

ical processes and phenomena.

a. AEVr of four regular coarse-grid subsets

Using the 120 model ensembles and method described

in section 2a, the AEVr of four resolutions of coarse-grid

subsets with resolution of 0.28 3 0.28, 0.38 3 0.38, 0.48 3

0.48, and 0.58 3 0.58, respectively, were estimated and

displayed in Fig. 4. For the 0.28 3 0.28 and 0.38 3 0.38

FIG. 3. Spread (variance) of model ensembles taken randomly

from a 10-yr model simulation run (unit: 8C). It shows patterns of

large-mesoscale and interseasonal–interannual variability of the

model SST fields and is used as a proxy of the SST background

error variance in this study.
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subsets, the AEVr values are well below 0.18C throughout

the model domain; except for the mainstream of the

Kuroshio and the estuary of Changjiang River, where the

maximum variance extends to 0.258C (it is necessary to

mention that these AEVs are overly reduced by the it-

erative procedure. We can hardly expect that the analysis

result will also be reduced to this level with reasonable

assimilation parameters. However, the assimilation filed

has the same pattern with the updated AEV, as illustrated

in section 5b. In sharp contrast to this phenomenon, ac-

cording to the background spread illustrated in Fig. 3, the

Kuroshio is not characterized by the most significant

background variances. The Kuroshio transports warm

water northeastward from the west Pacific warm pool

and constructs a sharp front along its mainstream. The

high temperature gradient along with the strong current

reduces the covariance around the mainstream and re-

stricts the correlated regions of high covariance within

FIG. 4. AEVs (equal to the diagonals of Pa) of four coarse-grid subsets. The coarse-grid resolutions are indicated in panel (a), with the

total number in the networks shown in panel (d). (a) The correlation distributions around the four red points are indicated with a solid

contour.

JUNE 2010 L I E T A L . 1051



a small region (according to the correlation distributions

of the red points illustrated in Fig. 4a). As a result, the

observations around the Kuroshio are given with tiny

weights and can hardly contribute to reduce the error

variances along the Kuroshio. The situation is similar for

the Changjiang River’s outflow. Because of the compli-

cated topography and huge amounts of freshwater inflow

in this area, the characteristics of its water mass are

dramatically distinguished from the surrounding water

masses. The correlation between its freshwater and that

of the adjacent locations is even negligible; therefore,

the state vector is rarely impacted by the surrounding

observations. The correlations around four points are

illustrated in Fig. 4a, in which the spatial scale of cor-

related regions around SCS points and the west Pacific

points extends to 500 km. In contrast, the correlated re-

gions around the other two points (located in the fresh-

water outflow and the Kuroshio mainstream, respectively)

are restricted within a small range.

For the 0.48 3 0.48 and 0.58 3 0.58 subsets, the AEVr

in SCS exceeds 0.18C, whereas a part of the Kuroshio

mainstream is characterized by a high variance of more

than 0.48C. However, for several other regions over the

model domain, a horizontal resolution of 0.58 is suffi-

cient enough to reduce the uncertainty, such as in the

Northwestern Pacific Ocean area to the southeast of the

Kuroshio mainstream in this model. The subset with

0.58 3 0.58 resolution is a little rough to sufficiently restrict

the AEVr all over the model domain. However, the

analysis variances have been successfully reduced to

around 0.18C in most regions and the gaps with large

AEVr can be filled by some optimally selected observa-

tions that will be presented next.

b. Locations and AEVa of augmented subsets

In this section, we discuss adding some additional lo-

cations to each of the 0.38 3 0.38, 0.48 3 0.48, and 0.58 3

0.58 subsets, respectively. As described in section 2c, these

additional optimal locations are determined one by one

iteratively. The space mean and the maximum of AEVas

were calculated in each iteration and plotted in Fig. 5,

with the x label indicating the total number of the obser-

vation locations (including those in each coarse-resolution

subset). The spatial mean of AEVa is significantly reduced

by additional optimal observations, decreasing from 0.18C

and approaching 0.058C (these AEVs are also overly re-

duced by iteratively strategy), whereas the maximum is

reduced from 0.48C to nearly 0.258C. The reduction of

these two indices slows down after the number of addi-

tional observation locations exceeds 4000. According to

these curves, the augmented subsets from the 0.58 3 0.58

subsets are obviously superior compared to the other

two subsets (i.e., 0.38 3 0.38 and 0.48 3 0.48) when added

with the same number of points. The asterisks in each

curve represent 11000, 12500, and 14000 observation

points, respectively.

The locations of these augmented subsets are illus-

trated in Fig. 6. It is clearly seen that additional obser-

vation locations are concentrated in several special areas,

which can be associated with certain physical processes.

With 1000 observation locations added, the additional

observation locations are mainly concentrated along

the Kuroshio mainstream and around the outflow of the

Changjiang River (marked A and B in Fig. 6a). With the

added locations reaching 2500, the density in the Taiwan

Strait and the Kuroshio extension are also dramatically

increased. This can be explained by their complicated

current structures and the high variability of SST states

(marked C and D in Fig. 6b). Finally, when further in-

creasing the additional locations to 4000, three centers

of high location concentration appear, which can also be

related to specific physical processes. The center to the

west of the Northern Philippines (marked E in Fig. 6c)

corresponds to the cyclonic warm eddy in the winter

monsoon season, described in section 3 and marked with

label E in Fig. 2. The second center (marked F in Fig. 6c),

located to the east of the Vietnam shore and is associ-

ated with the warm eddy and the Vietnam offshore jet in

summer. And the center marked with ‘‘G’’ can be asso-

ciated with the winter anticyclonic cold eddy located to

the southeast of Vietnam. These eddies and jets disturb

the structure of circulation and increase the variability

FIG. 5. Decreasing curves of AEVs associated with the increase

of additional optimal observations of the four augmented coarse-

grid subsets. (top) The x label is the total number of observation,

and (bottom) the y labels indicate the space mean and the maxi-

mum of variances (equal to the mean of Pa trace and the maxi-

mum of Pa diagonal). Three points marked with an asterisk in

each curve represent 11000, 12500, and 14000 additional ob-

servations, respectively.
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of sea surface temperature, thus, requiring denser ob-

servations to reduce the AEVa at these regions. High

observation location concentration is also found at

several other discrete areas such as the Japan Sea (JS).

The distributions of AEVa of these augmented sub-

sets are compared and illustrated in Fig. 7. We choose

three augmented observation subsets: 1) a 0.38 3 0.38

subset plus the first 1000 optimal locations (Fig. 7a); 2)

a 0.48 3 0.48 subset plus the first 2500 optimal locations

(Fig. 7e); and 3) a 0.58 3 0.58 subset plus the first 4000

optimal locations (Fig. 7i), with the total number of lo-

cations 8459, 6671, and 6687, respectively. They produce

similar efficiency, although the sizes of these subsets are

different. In these augmented subsets, the AEVa of the

Kuroshio and Changjiang River outflow are successfully

restricted below 0.28C and around 0.058C for most of the

other areas. Among these three augmented subsets, the

thinning scheme of 0.58 3 0.58 1 4000 is superior in both

the analysis variances and number of observations;

therefore, it is considered as the optimal thinning scheme

FIG. 6. The density of observation locations of the three augmented subsets with (left to right) different numbers (1000, 2500, and 4000)

of additional optimally selected locations. The color bar indicates the number of locations within the 30 km 3 30 km boxes. (top to

bottom) The augmented subsets of 0.38 3 0.38, 0.48 3 0.48, and 0.58 3 0.58. The total number of observations in each scheme is indicated in

the right corner, respectively.
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in this study. Through comparison between Figs. 7a and

7b, or between Figs. 7e and 7f, it is clearly seen that the

situation is only slightly improved by further increasing

the number of observation locations.

5. Verifications of thinning results

a. Verification with the EEA method

As previously mentioned in the introduction, the ca-

pability of a thinned subset to preserve the information

of the whole dataset also plays a crucial role in assessing

an observation-thinning scheme. However, this capability

is associated with neither of the two steps described in

section 2. Therefore, it is necessary for us to verify the re-

sults of the previous sections using the real, full-resolution

dataset. One year (2006) of the daily FSTIA dataset is

used.

The EEA scheme (Ochotta et al. 2005) is a method

that attempts to fit the states with rough grids and then

estimates the error of the fitting result. An estimation

function (EF) is established to obtain the value of any

arbitrary location of the model domain with a given da-

taset Pi, by calculating the weighted average of sur-

rounding observations as follows:

FIG. 7. As in Fig. 6, but for the AEVs of augmented subsets (8C).
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f
b
(x) 5

�
p2P

f (p)w
h
(kx� pk)

�
p2P

w
h
(kx� pk)

, (13)

where wh(s) 5 e�s2/h2

is a positive, exponentially decreas-

ing the weighting function with points closer to x as-

signed with larger weights. The parameter h defines the

spatial scale of wh. And the function f(p) shows the

value of any appointed observation points.

Given an observation dataset P0 and its thinned sub-

set Pi, the EF fp,i serves as an approximation of fp,0.

The EF of the subset, the EF of the whole dataset,

and the differences between the two functions were

calculated continuously for 1 yr and were described as

function fp,i(p, t) and fp,0(p, t), where t 5 1 . . . 365

presents the time (every day of 2006) of the dataset and

p represents the location of the point. To verify the re-

sults of our thinning results, we defined a function in

every location as the temporal mean of the root of the

differences between the EF of the full dataset and a

thinned subset during the whole year, by the following

equation:

EV(P
i
) 5

1

N
�
N

t51
kf

p,0
(p, t)� f

p,i
(p, t)k2. (14)

Here, N is the range of verification time whose value is

about 1 yr. The EV function reflects the error of the ap-

proximation produced by a thinned subset from the full

dataset, which serves as a criterion for evaluating the

quality of a subset’s resolution and distribution, and to

demonstrate the capability of the subset to preserve the

original information of the full dataset on an intraseasonal–

interseasonal time scale. The EF of a certain subset is

obtained to fit the full dataset all over the model domain.

The three regular coarse-grid subsets: 0.38 3 0.38, 0.48 3

0.48, and 0.58 3 0.58 are first verified using the EV function.

The EV functions of augmented subsets 0.38 3 0.38 1

1000, 0.48 3 0.48 1 2500, and 0.58 3 0.58 1 4000 are also

calculated and the results are shown in Fig. 8.

For the 0.38 3 0.38, 0.48 3 0.48, and 0.58 3 0.58 subsets,

the EV functions increase with the dilution of the res-

olutions. The error variance extends to 0.48C in several

areas, such as the Kuroshio mainstream and its exten-

sion, the Changjiang River estuary, the Taiwan Strait,

and the JS, indicating that the SST states cannot be well

FIG. 8. AEVs [(a)–(c) of 3 coarse-grid subsets and of (d)–(f) 3 augmented subsets] calculated based on the FSTIA dataset during 2006.

JUNE 2010 L I E T A L . 1055



fitted by a coarse-grid subset in these regions. In sharp

contrast to the regular coarse-grid subsets, the augmented

subsets can all successfully fit the FSTIA dataset, with EV

functions having values below 0.18C over the model do-

main, suggesting that the optimally augmented subsets

can well preserve the information of the whole dataset.

b. Impacts on data assimilation and forecast

To further examine the impacts of differently thinned

observation subsets on data assimilation, we also per-

formed a series of assimilation experiments. A localized

ensemble optimal interpolation scheme was used to com-

pare the assimilation results of different observation sub-

sets (0.38 3 0.38, 0.58 3 0.58, and 0.58 3 0.58 plus 4000

additional observations). In the assimilation scheme, a

Gaussian local correlation function with the length scale

of 250 km is used. The background error ensembles for

the data assimilation are the same as used in observation

thinning. The model used in these assimilation experi-

ments is the same as described in section 3. We assimilate

the three different subsets every day during the whole 2006

separately. The time-mean SST RMSE of the analysis field

is displayed in Fig. 9, which indicates that the analysis

result of the coarse-grid observation subset (0.58 3 0.58)

is not unsatisfying along the Kuroshio and Taiwan Strait.

The optimally densified subset (0.58 3 0.58 plus 4000 ad-

ditional observations) significantly contrasts to the homo-

geneous one (0.38 3 0.38); the former successfully reduces

the analysis variance over these two high-uncertainty re-

gions, whereas the latter reduces the RMSE uniformly all

over the model domain, although it still retains a high

variance along the Kuroshio and the Taiwan Strait. In

another respect, we also notice two phenomena. First, an

extremely high RMSE appears along the boundary of the

model domain in all of the three results, which are not

successfully reduced by additional observations. The rea-

son is that the sponge boundary condition leads to a high

bias along the model boundary, which can hardly be cap-

tured and represented by the ensemble. Second, the high

RMSE along the Kuroshio has not been perfectly reduced

in the analysis field of the optimal-thinned observations,

especially along the southern boundary of the Korushio

and its extension. One reason could be that the stationary

ensemble cannot perfectly represent the variable of the

dynamical system. Using thinning observations con-

structed by a global strategy in a localized assimilation

scheme could be another reason. In this localized assimi-

lation scheme, the covariance constructed by the ensem-

ble will be further restricted by the localization operator,

which puts the AEV under constraint. However, intro-

ducing localization into the thinning system will dramati-

cally increase the computational cost, even making the

procedure unpractical. We will make further attempts to

improve the algorithm to utilize the dynamic-dependent

ensemble and localization scheme in this thinning method

in the future work.

The thinning strategy should be justified ultimately

by the associated forecast errors. However, the forecast

errors are sensitive to many other factors, such as the in-

flation coefficient, the localization length scales in assim-

ilation schemes, the control of fast gravity waves created

by the imbalance between model variables immediately

after the assimilation of observations, errors in the atmo-

spheric forecast, as well as the model bias. As a result, it is

difficult to handle a verification based on the forecast er-

rors. We here performed three 10-day hindcasts starting

from 1 March 2009 with the assimilation of three thinned

subsets of the SST—that is, 0.38 3 0.38, 0.58 3 0.58, and

FIG. 9. Time-mean RMSE of SST analysis fields of 3 different observation subsets in 2006: (a) 0.58 3 0.58 coarse grid, (b) 0.58 3 0.58 plus

4000 additional observations, and (c) 0.38 3 0.38 grid.
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0.58 3 0.58 plus 4000 additional observations, respec-

tively. The ECMWF reanalysis is used as the atmosphere

forcing to minimize the errors in the ‘‘forecasted’’ at-

mospheric field. The setups for the three hindcast ex-

periments are the same, except for the initial inputs of

SST data that are thinned differently. The space-mean

RMSE was indicated in Fig. 10, which partly supports

the impact of different observation subsets on the fore-

cast results. The deviations among different subsets are

small, and the RMSE increased rapidly in the first sev-

eral days, which could be caused by the adjustment of

gravity waves in the first several days and the model bias.

We find that the SST along the boundary area decayed

very fast. In addition, a significant warm bias appears

along the Kuroshio after the 5 day hindcast because of

an overestimated transportation along the Kuroshio in

the model.

6. Conclusions and discussion

In this study, an observation-thinning scheme is pro-

posed to thin high-resolution SST observations such as

the GHRSST products for a CSCS eddy-resolving model

and applied to its assimilation system. The scheme is

established following the objective principle of maximally

reducing the analysis error with a limited number of ob-

servations. The analysis variances are obtained using the

AEC matrix update equation before assimilation is per-

formed. The procedure of the thinning scheme is verified

by EEA using 1 yr of high-resolution SST observations

and is also verified with an assimilation forecast system.

The main conclusions are as follows:

1) For the Chinese shelf/coastal eddy-resolving model,

the 0.38 3 0.38 resolution SST observations can al-

ready successfully reduce the analysis variance in an

assimilation system. With the additional optimally

located observations taken into consideration, the

subset of 0.58 3 0.58 resolution plus 4000 additional

optimal locations is selected to be the optimal thin-

ning scheme. After being updated with the thinned

grid observations, the AEV are effectively restricted

below 0.18C all over the model domain.

2) The additional optimal locations mainly concentrate

within several special areas: the Kuroshio mainstream

and its extension, the outflow of the Changjiang River,

the Taiwan Strait, and the three centers in SCS. These

areas produced by the optimal observation thinning

scheme can always be associated with physical pro-

cesses, and the refined subsets can efficiently restrict

the high variances around these regions.

3) The optimally thinned subsets are verified using the

full-resolution dataset and the result is satisfying—

that is, the optimal subset can maximally restrict the

analysis variances with a limited number of obser-

vations, and the full dataset is well fitted by the op-

timal subsets constructed by the thinning scheme.

4) The optimal thinned subsets are also verified with

a series of assimilation–hindcast experiments. The

results indicate that this thinning scheme is efficient

in improving the assimilation results.

The purpose of this study is to develop an objective

scheme to help us locally reduce the resolution of ob-

servations before conducting data assimilation. Despite

the fact that this observation-thinning scheme was ap-

plied only to the SST dataset here, it has the potential for

application to other dense observations and further in-

vestigation is necessary to evaluate the effects. The results

of the experiments are meaningful in that the concen-

trated regions can always be well explained by the par-

ticular physical phenomena and processes. Further study

will focus on improving this method by localized scheme,

as well as by improving the arithmetic to implement

a time-dependent/dynamic-dependent ensemble optimal

thinning scheme.

FIG. 10. Space-mean RMSE of 3 parallel hindcast experiments from 1 to 10 Mar, beginning with

the assimilation results of these 3 observation subsets, respectively.
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